p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.6Q8, C42.24D4, (C4×C8)⋊7C4, C8⋊C4⋊4C4, C22.10C4≀C2, (C2×C4).32C42, C42⋊5C4.1C2, C42.290(C2×C4), (C22×C4).177D4, (C4×M4(2)).9C2, C2.7(C4.9C42), C2.6(C42⋊6C4), C2.C42.2C4, C42.6C4.6C2, (C2×C42).128C22, C2.6(M4(2)⋊4C4), C23.139(C22⋊C4), C22.38(C2.C42), (C2×C4).15(C4⋊C4), (C22×C4).147(C2×C4), (C2×C4).295(C22⋊C4), SmallGroup(128,20)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.6Q8
G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1c2, ab=ba, ac=ca, dad-1=ab2, cbc-1=b-1, dbd-1=a2b-1, dcd-1=ac3 >
Subgroups: 152 in 76 conjugacy classes, 32 normal (24 characteristic)
C1, C2, C2, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C42, C2×C8, M4(2), C22×C4, C22×C4, C2.C42, C2.C42, C4×C8, C8⋊C4, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×M4(2), C42⋊5C4, C4×M4(2), C42.6C4, C42.6Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2.C42, C4≀C2, C4.9C42, C42⋊6C4, M4(2)⋊4C4, C42.6Q8
(1 19 31 9)(2 20 32 10)(3 21 25 11)(4 22 26 12)(5 23 27 13)(6 24 28 14)(7 17 29 15)(8 18 30 16)
(1 3 5 7)(2 8 6 4)(9 11 13 15)(10 16 14 12)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 18 6 22)(3 29)(4 14 8 10)(7 25)(9 13)(11 21)(12 32 16 28)(15 17)(19 23)(20 26 24 30)
G:=sub<Sym(32)| (1,19,31,9)(2,20,32,10)(3,21,25,11)(4,22,26,12)(5,23,27,13)(6,24,28,14)(7,17,29,15)(8,18,30,16), (1,3,5,7)(2,8,6,4)(9,11,13,15)(10,16,14,12)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,18,6,22)(3,29)(4,14,8,10)(7,25)(9,13)(11,21)(12,32,16,28)(15,17)(19,23)(20,26,24,30)>;
G:=Group( (1,19,31,9)(2,20,32,10)(3,21,25,11)(4,22,26,12)(5,23,27,13)(6,24,28,14)(7,17,29,15)(8,18,30,16), (1,3,5,7)(2,8,6,4)(9,11,13,15)(10,16,14,12)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,18,6,22)(3,29)(4,14,8,10)(7,25)(9,13)(11,21)(12,32,16,28)(15,17)(19,23)(20,26,24,30) );
G=PermutationGroup([[(1,19,31,9),(2,20,32,10),(3,21,25,11),(4,22,26,12),(5,23,27,13),(6,24,28,14),(7,17,29,15),(8,18,30,16)], [(1,3,5,7),(2,8,6,4),(9,11,13,15),(10,16,14,12),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,18,6,22),(3,29),(4,14,8,10),(7,25),(9,13),(11,21),(12,32,16,28),(15,17),(19,23),(20,26,24,30)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 8A | ··· | 8H | 8I | 8J | 8K | 8L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | - | + | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | D4 | C4≀C2 | C4.9C42 | M4(2)⋊4C4 |
kernel | C42.6Q8 | C42⋊5C4 | C4×M4(2) | C42.6C4 | C2.C42 | C4×C8 | C8⋊C4 | C42 | C42 | C22×C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 1 | 1 | 2 | 8 | 2 | 2 |
Matrix representation of C42.6Q8 ►in GL6(𝔽17)
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 9 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 3 | 1 | 4 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 14 | 12 | 13 | 1 |
0 | 0 | 0 | 0 | 0 | 4 |
10 | 11 | 0 | 0 | 0 | 0 |
11 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 2 | 16 | 5 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 13 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 4 | 0 |
0 | 0 | 12 | 0 | 15 | 13 |
G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,9,16,3,0,0,0,0,0,1,0,0,0,0,0,4,16],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,14,0,0,0,2,13,12,0,0,0,0,0,13,0,0,0,0,0,1,4],[10,11,0,0,0,0,11,10,0,0,0,0,0,0,12,0,2,0,0,0,0,0,16,13,0,0,15,0,5,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,1,13,16,12,0,0,0,16,0,0,0,0,0,0,4,15,0,0,0,0,0,13] >;
C42.6Q8 in GAP, Magma, Sage, TeX
C_4^2._6Q_8
% in TeX
G:=Group("C4^2.6Q8");
// GroupNames label
G:=SmallGroup(128,20);
// by ID
G=gap.SmallGroup(128,20);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,520,1018,3924,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=a*c^3>;
// generators/relations